edexcel :

Mark Scheme (Results)
Summer 2016

Pearson Edexcel International GCSE
Chemistry (4CH0) Paper 1C
Science Double Award (4SC0) Paper 1C
Pearson Edexcel Level 1/Level 2 Certificate Biology (KCH0) Paper 1C Science (Double Award) (KSC0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100
languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4CH0_1C_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	B (condensation)		1
(b)	M1 (the particles/they) lose (kinetic) energy / have less energy M2 (the particles/they) move closer together / pack more closely M3 (the particles/they) do not move as freely / move more slowly / move less randomly NB M1, M2 and M3 can be scored anywhere across the whole answer	ACCEPT lose potential/heat energy ACCEPT not as many gaps / smaller gaps REJECT refs to density ACCEPT molecules for particles REJECT atoms once only.	3

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 2 (a) \& A (argon) \& \& 1 \\
\hline (b) \& \begin{tabular}{l}
\[
\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{O}
\] \\
do not allow as part of an equation
\end{tabular} \& IGNORE names even if correct \& 1 \\
\hline \begin{tabular}{l}
(c) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
M1 (the copper) reacts/combines with oxygen / oxidised \\
M2 to form copper(II) oxide \\
the volume of a gas changes with temperature / gas expands when hot/heated \\
all the oxygen has reacted / the oxygen has been used up / no oxygen (left to react)
\end{tabular} \& \begin{tabular}{l}
IGNORE bonds with oxygen \\
IGNORE burns / combusts REJECT refs to rust \\
ACCEPT copper oxide REJECT any other oxidation state \\
ACCEPT reverse argument IGNORE refs to density \\
DO NOT ACCEPT refs to 'not enough oxygen'
\end{tabular} \& 2

1
1

\hline (d) \& | M1 (150-125) or $25\left(\mathrm{~cm}^{3}\right)$ |
| :--- |
| M2 $(25 / 150) \times 100=16.7(\%)$ |
| OR |
| M1 $100 \times(125 / 150)=83.3\left(\mathrm{~cm}^{3}\right)$ |
| M2 100-83.3 = 16.7 (\%) |
| M2 is cq on M1 | \& | ACCEPT 17 / 16.67 / |
| :--- |
| 16.6 |
| ACCEPT 83 / 83.33/ |
| 83. 3 |
| REJECT 16.6 for M2 |
| correct answer (with no working) scores 2 | \& 2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
3 (a)	D (filtration)		1
(b) (i)		award one mark for each correct label solvent: ALLOW label line to any point under the solvent level paper: ALLOW label line to paper, including under solvent level original spot: has to be in the centre of the baseline i.e. below the visible spots	3
(ii)	Four because there are four spots/dots (above the baseline in the chromatogram)	ALLOW blobs / marks / colours IGNORE refs to different heights	1

Question number	Answer	Notes	Marks
4 (a) (i)	E		6
(ii)	B		
(iii)	F		
(iv)	C		
(v)	F		
(vi)	E		
(b) (i)	M1 (bonding/shared) electrons		2
	M2 nuclei	ACCEPT protons / nucleus(es)	
	M1 nuclei M2 bonding/shared electrons	ACCEPT nucleus(es)	
(ii)	$A_{2} \mathrm{D} / \mathrm{DA}_{2}$	ACCEPT $\mathrm{H}_{2} \mathrm{O}$	1
		REJECT if charges shown	

Question number	Answer		Notes	Marks
5 (a)	Metal	Highest temperature	M1 for magnesium and zinc M2 and M3 for other 3 metals - 1 mark for 2 correct, 2 marks for all 3 correct Penalise missing trailing 0 once only	3
	aluminium	42.0		
	copper	25.0		
	iron	29.0		
	magnesium	46.5		
	zinc	31.5		
(b) $\begin{aligned} & \text { (i) } \\ & \text { (ii) }\end{aligned}$	magnesium		mark csq on table in (a)	1
	it/copper does not react (with sulfuric acid)		ACCEPT there is no reaction / the (sulfuric) acid does not react (with copper) IGNORE copper is unreactive	1
(c)	M2 because there is a larger volume/mass of solution/liquid (to be heated) OR same (amount of) energy distributed to a larger number of particles		ACCEPT halved IGNORE any quoted temperatures ACCEPT there is more/twice as much solution/liquid to be heated ALLOW acid for solution/liquid REJECT the magnesium has to react with more acid M2 dep on M1	2

Question number	Answer				Notes	Marks
6 (a) (i)	$\mathbf{H}_{\cdot}^{\times} \mathbf{H}$ NB H does not need to be shown if touching / overlapping circles are shown				ACCEPT any combination of dots and crosses if overlapping / touching circles used both electrons must be within the overlapping/touching area	1
(ii)	M1 weak forces (of attraction) between molecules / weak intermolecular forces				ACCEPT particles ACCEPT bonds for forces for both M1 and M2 ACCEPT correctly named IMF	2
	M2 (therefore) little (thermal/heat) energy required to overcome these forces / separate the molecules (into the gaseous state)				IGNORE more easily separated / easier to break	
					REJECT atoms for both M1 and M2	
					NB any mention of breaking covalent or ionic bonds scores 0	
(b) (i)	M1 atoms of the same element				atoms with same atomic number / atoms same number of protons	2
	M2 with different masses				different mass numbers / different numbers of neutrons	
					IGNORE references to electrons unless incorrect	
		${ }^{1} \mathrm{H}$	${ }^{2} \mathrm{H}$	${ }^{3} \mathrm{H}$	one mark for each	3
	protons	1	1	1	correct row	
	neutrons	0	1	2		
	electrons	1	1	1		

Question number	Answer	Notes	Marks
(c) (i)	exothermic		1
(ii)	$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ M1 all formulae correct M2 balanced	ACCEPT multiples and halves IGNORE state symbols even if incorrect	2
(iii)	M1 (add to) anhydrous/white copper(II) sulfate	turns copper(II) sulfate from white to blue scores 2	2
	M2 turns blue M2 dep on M1 or near miss	ACCEPT equivalent description of test with anhydrous cobalt(II) chloride (blue to pink)	
		IGNORE any references to testing with indicators	
(iv)	M1 measure/determine the boiling point	ACCEPT boil the water / heat until it boils	2
	M2 $100^{\circ} \mathrm{C}$	it boils at $100^{\circ} \mathrm{C}$	
	OR	ALLOW "heat it and it boils at $100^{\circ} \mathrm{C}$ " for 2	
	M1 measure/determine the melting/freezing point	ACCEPT freeze the water / cool until it freezes	
	M2 $0^{\circ} \mathrm{C}$	it freezes at $0^{\circ} \mathrm{C}$	
	OR	ALLOW "cool it and it freezes at $0^{\circ} \mathrm{C}$ " for 2	
	M1 measure/determine the density		
	M2 $1 \mathrm{~g} / \mathrm{cm}^{3}$		

Question number	Answer	Notes	Marks
7 (a) (i)	Any two from: M1 calcium/solid/it disappears M2 bubbles (of gas) / fizzing / effervescence M3 white solid (forms) / white suspension (forms) / (liquid) turns milky / (liquid) turns cloudy / white trails forms M4 calcium moves (up and down) M5 water/solution/liquid gets warm	ACCEPT dissolves / gets smaller IGNORE mass decreases ACCEPT gas given off IGNORE hydrogen given off IGNORE incorrect gas / colour ACCEPT white precipitate forms IGNORE floats REJECT refs to moving on the surface ACCEPT temperature of water/solution/ liquid rises IGNORE refs to heat released	2
(ii)	M1 any value greater than 7 M2 hydroxide ions/ OH^{-}are present / calcium hydroxide/ $\mathrm{Ca}(\mathrm{OH})_{2}$ is an alkali / calcium hydroxide/ $\mathrm{Ca}(\mathrm{OH})_{2}$ is a base M2 dep on correct or missing M1	ACCEPT "greater than 7" ACCEPT metal hydroxides are alkalis/bases IGNORE hydroxides are alkalis/bases IGNORE calcium is an alkali metal	2
(b)	M1 (Solid X) - CaO / calcium oxide M2 (Solution Y) - $\mathrm{CaCl}_{2} /$ calcium chloride M3 (Solid Z) $-\mathrm{CaCO}_{3} /$ calcium carbonate	if both formula and name given both must be correct REJECT $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} /$ calcium hydrogencarbonate	3

Question number	Answer	Notes	Marks
8 (a)	NB the arrow must point to the solid	ACCEPT a flame if >1 arrow drawn, all must be correct	1
(b)	to condense the (water) vapour / steam	ACCEPT to cool the water vapour ACCEPT to cool/condense the gas (given off) IGNORE to condense the water IGNORE to stop the water escaping as water vapour IGNORE to condense the product	1
(c)	M1 $n\left(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\right)=2.50 \div 250$ OR 0.01 (mol) M2 $n\left(\mathrm{H}_{2} \mathrm{O}\right)=0.01 \times 5$ OR $0.05(\mathrm{~mol})$ M3 mass of water $=(0.05 \times 18)=0.9(0)(\mathrm{g})$ OR M1 5×18 OR 90 M2 $250(\mathrm{~g}) \rightarrow 90(\mathrm{~g})$ M3 $2.50(\mathrm{~g}) \rightarrow 0.9(0)(\mathrm{g})$ OR M1 5×18 OR 90 M2 $90 \div 250 \times 100(\%) \rightarrow 36(\%)$ M3 $36(\%) \times 2.50(\mathrm{~g}) \rightarrow 0.9(0)(\mathrm{g})$	mark csq throughout correct final answer (with no working) scores 3 ACCEPT calculations that use A_{r} of Cu as 63.5 (giving $0.9(05)(\mathrm{g})$ as a final answer) M2 subsumes M1 for all methods	3

| Question
 number
 (a) | Notes | Marks |
| :--- | :--- | :--- | :---: | :---: |

Question number	Answer	Notes	Marks
9 (c)	M1 (water) - to remove/flush out solution (X) M2 (solution Y) - to remove the water / avoid diluting solution Y	ACCEPT so that the only liquid in the burette is solution Y IGNORE to remove impurities for both M1 and M2	2
(d)	solution Y is less concentrated (than solution X) OR solution (in Experiment 2) is less concentrated	IGNORE references to reactivity ALLOW weaker / less strong instead of less concentrated IGNORE refs to more/less acidic ACCEPT reverse argument	1

Question number	Answer	Notes	Marks
10 (a) (i) (ii)	Q R S P M1 Q and P correct M2 R and S correct M1 magnesium chloride M2 hydrogen M1 and M2 can be in either order	ACCEPT correct formulae IGNORE incorrect formulae	2 2
(b)	M1 (add) (aqueous) silver nitrate / AgNO_{3} M2 white precipitate (forms)	IGNORE refs to nitric acid do not award M1 if hydrochloric acid also added M2 dep on mention of silver nitrate in M1	2

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 11 (a) \& propane \& \& 1 \\
\hline (b) \& \(\mathrm{C}_{4} \mathrm{H}_{10}\) \& \begin{tabular}{l}
ACCEPT \(\mathrm{H}_{10} \mathrm{C}_{4}\) \\
penalise incorrect use of symbols and subscripts \\
REJECT structural and displayed formulae
\end{tabular} \& 1 \\
\hline (c) \& W X Y \& all three required \& 1 \\
\hline (d) \& \(\mathrm{CH}_{2}\) \& \begin{tabular}{l}
ACCEPT \(\mathrm{H}_{2} \mathrm{C}\) \\
REJECT \(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}\)
\end{tabular} \& 1 \\
\hline (e) \& ```
M1 (unsaturated) contains a
(carbon to carbon) double bond
M2 (hydrocarbon)
(compound/molecule/substance)
contains (the elements/atoms)
hydrogen and carbon...
M3 ...only
``` \& \begin{tabular}{l}
ACCEPT multiple bonds IGNORE refs to single bonds \\
REJECT element/atom/ mixture for compound/ molecule/substance REJECT ions/molecules for elements/atoms \\
M3 dep on mention of hydrogen \& carbon in M2 ACCEPT other equivalents e.g. solely, just, exclusively
\end{tabular} \& 3 \\
\hline \begin{tabular}{l}
(f) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
 \\
UV / ultraviolet light/radiation
\end{tabular} \& \begin{tabular}{l}
ACCEPT bromine in any position \\
ACCEPT multiple substitutions \\
ACCEPT correct displayed formula given as a product of an equation \\
IGNORE any structural formula eg \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\) or molecular formula IGNORE \(\mathrm{H}-\mathrm{Br}\) \\
IGNORE references to heat / (high) temperature / (high) pressure
\end{tabular} \& 1

1 <br>
\hline
\end{tabular}

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 12 (a) | M1 (Fe) (Ti) (O) <br>  $\frac{36.8}{56}$ $\frac{31.6}{48}$ $\frac{31.6}{16}$ <br> M2 0.66 0.66 1.98 <br> M3 1 1 3 <br> OR    <br> M1 calculation of $M_{r}$ of $\mathrm{FeTiO}_{3}=152$    <br> M2 expression for \% of each   <br> element e.g. Fe: $56 \div 152 \times 100 \%$    <br> M3    <br> $36.8 \%$ Fe, $31.6 \% ~ \mathrm{Ti}, 31.6 \% \mathrm{O}$    | Division by atomic number scores 0 <br> ACCEPT any number of sig figs except one ALLOW 0.65, 0.65, 1.97 | 3 |
| (b) | M1 (element oxidised) - carbon / C <br> M2 (reason) - (it has) gained/ combined with oxygen / forms carbon dioxide <br> M2 dep on M1 | IGNORE refs to electron loss <br> ACCEPT oxidation state/ number increases ACCEPT oxidation state/ number changes from 0 to $(+) 4$ | 2 |
| (c) (i) <br> (ii) <br> (iii) | $\mathrm{TiCl}_{4}+2 \mathrm{Mg} \rightarrow \mathrm{Ti}+2 \mathrm{MgCl}_{2}$ <br> M1 all formulae correct <br> M2 balanced <br> titanium / Ti / magnesium / Mg reacts with oxygen <br> OR <br> titanium / Ti / magnesium / Mg reacts with nitrogen <br> magnesium chloride will dissolve more quickly / to help the magnesium chloride to dissolve / more of the magnesium chloride is in contact with the water | ACCEPT multiples and halves IGNORE state symbols even if incorrect <br> IGNORE refs to oxidation ACCEPT forms an oxide <br> ACCEPT forms a nitride <br> IGNORE to speed up the reaction IGNORE refs to increasing surface area | 2 |


| (d) (i) | M1 positive ions/cations/nuclei and <br> delocalised electrons <br> M2 attract (one another) | IGNORE metal ions <br> ALLOW sea of electrons <br> IGNORE free electrons | 2 |
| :---: | :--- | :--- | :---: |
| M2 dep on M1 | any refs to ionic bonding, <br> covalent bonding or IMFs <br> scores zero | IGNORE carry charge | 1 |
| (ii) | (delocalised) electrons can <br> flow/move (through structure)/are <br> mobile (when voltage/pd is applied) |  |  |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 13 (a) | $\mathrm{I}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{ICl}$ | ACCEPT halves and multiples | 1 |
| (b) (i) | M1 rate of forward reaction = rate of backwards reaction <br> M2 concentrations of reactants/ products remain constant | ACCEPT both reactions occur at the same rate IGNORE forward reaction = backwards reaction <br> ACCEPT amounts/masses for concentrations ACCEPT don't change/stay for remain IGNORE concentrations/ amounts of reactants and products are the same/are equal ALLOW colour remains constant | 2 |
|  | M1 equilibrium has shifted to the left / equilibrium has shifted to the ICl side / equilibrium has shifted to the reactants side OR more ICl has been produced / more reactants have been produced | IGNORE references to Le Chatelier's principle e.g. an increase in temperature favours the endothermic reaction | 2 |
|  | M2 an increase in temperature shifts the equilibrium in the endothermic direction | ACCEPT 'therefore the (backward) reaction is endothermic' for M2 if M1 has been awarded |  |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 14 (a) | Solid ${ }^{\text {a }}$ Amount | ALLOW values (corrected rounded) from 1 sf up to calculator value | 2 |
|  | $\mathrm{KHCO}_{3}$ 年 0.080 |  |  |
|  | $\mathrm{K}_{2} \mathrm{O}$ 0.059 |  |  |
|  | KOH |  |  |
|  | $\mathrm{K}_{2} \mathrm{CO}_{3}$ 0.040 |  |  |
|  | all four correct = 2 marks three correct = 1 mark |  |  |
| (b) | M1 equation 3 <br> M2 the (mole) ratio of $\mathrm{KHCO}_{3}$ to $\mathrm{K}_{2} \mathrm{CO}_{3}$ /reactant to product is $2: 1$ | mark csq on amounts given in part (a) | 2 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 15 (a) | Enthalpy change (of reaction) | ACCEPT heat (energy) change | 1 |
| (b) | M1 temperature rise $=23.5\left({ }^{\circ} \mathrm{C}\right)$ <br> M2 heat produced $=200 \times 4.2 \times$ 23.5 <br> M3 $=20000(\mathrm{~J})$ OR 20 kJ unit must be given if answer in kJ | Penalise use of 0.725 / 200.725 / 199.275 g in M2 only <br> ACCEPT 19740 / 19700 (J) <br> ACCEPT 19.74(0) / <br> 19.7(00) kJ <br> IGNORE sign <br> mark consequentially throughout <br> correct answer (with no working) scores 3 | 3 |
| (c) (i) | (the reaction is) exothermic <br> OR <br> transfers heat/thermal energy to the surroundings / gives out heat/thermal energy <br> OR <br> gives out heat | ACCEPT loses for gives out <br> DO NOT ACCEPT just energy <br> ACCEPT loses for gives out | 1 |
| (ii) | incomplete combustion/burning (of the butane) <br> OR (burns in a) limited supply of oxygen/air |  | 1 |
| (iii) | less heat (energy) / thermal energy produced <br> OR temperature rise less (than expected) | ACCEPT less heat (energy) / thermal energy transferred to the water <br> ALLOW soot has absorbed some of the heat (energy) / soot has acted as an insulator | 1 |
| (iv) | heat/energy is lost to the air/ beaker/surroundings / water evaporates | ALLOW beaker is not insulated/has no lid ALLOW water is not stirred | 1 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 16 (a) | to avoid loss of acid (spray) / solution / liquid <br> OR <br> only gas/carbon dioxide can escape | REJECT to avoid $\mathrm{CaCO}_{3} /$ solid escaping | 1 |
| (b) | carbon dioxide / gas <br> AND escapes / given off / released | REJECT incorrectly named gas | 1 |
| (c) (i) <br> (ii) |  <br> M1 curve starts at (approximately) same place, is steeper and levels off before the original curve <br> M2 levels off at same height as original curve <br> M1 more particles (in same volume of solution) / particles are closer together <br> M2 number of (successful) collisions per second increases / particles collide more often <br> M3 (therefore) rate increases / reaction gets faster <br> NB refs to particles move faster/have more energy can score M3 only for a correct statement about increase in rate | M2 dep on M1 <br> ACCEPT ions REJECT atoms / molecules <br> ACCEPT per unit time / per minute <br> ACCEPT collision frequency increases <br> IGNORE any refs to chance of collisions | 2 |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL

